P-Cyclic C-Contraction Result in Menger Spaces Using a Control Function
نویسندگان
چکیده
منابع مشابه
A Contraction Theorem in Menger Probabilistic Metric Spaces
In this paper, we consider complete menger probabilistic quasimetric space and prove a common fixed point theorem for commuting maps in this space.
متن کاملSome Fixed Point Results in Menger Spaces Using a Control Function
Here we prove a probabilistic contraction mapping principle in Menger spaces. This is in line with research in fixed point theory using control functions which was initiated by Khan et al. [Bull. Austral. Math. Soc., 30(1984), 1-9] in metric spaces and extended by Choudhury et al. [Acta Mathematica Sinica, 24(8) (2008), 1379-1386] in probabilistic metric spaces. An example has also been constru...
متن کاملA RESULT ON FIXED POINTS FOR WEAKLY QUASI-CONTRACTION MAPS IN METRIC SPACES
In this paper, we give a new fixed point theorem forWeakly quasi-contraction maps in metric spaces. Our results extend and improve some fixed point and theorems in literature.
متن کاملOn fixed point theorems in fuzzy metric spaces using a control function
In this paper, we generalize Fuzzy Banach contraction theorem establishedby V. Gregori and A. Sapena [Fuzzy Sets and Systems 125 (2002) 245-252]using notion of altering distance which was initiated by Khan et al. [Bull. Austral.Math. Soc., 30(1984), 1-9] in metric spaces.
متن کاملSome Remarks on Almost Menger Spaces and Weakly Menger Spaces
{V : V ∈ Vn} = X . Clearly, every Menger space is almost Menger and every almost Menger space is weakly Menger, but the converses do not hold (see Examples 2.1 and 2.2). On the study of weakly Menger spaces, almost Menger spaces and Menger spaces, the readers can see the references [2, 3, 4, 5, 6]. Here we investigate the relationships among almost Menger spaces, weakly Menger spaces and Menger...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2016
ISSN: 2391-4661,0420-1213
DOI: 10.1515/dema-2016-0018